Reactive
programming

in Javascript with Reactjs

JFokus 3. february 2015

Forget about...

Hgtablished truths

Bverytning you thought you knew
about making web apps

Relax

It's going to be okay

Hello, I'm Sven m

[am a frontend developer from
Inmeta Consulting in Norweay

The Problem

How can we build large apps with data
that changes over time?

put: local state that changes over time
is the root of all evil

ModelViewController

T'he MVC pattern was developed in
1979

[t was deviced as & general solution
to the problem of users controlling a
large and complex datea, set.

It’s not 1979 anymore...

The MVC problem

1'hin views / templates
Models and controllers that grows...
..and grows

until most of your time is spent
Keeping them in sync

We need a better model

React

A Javascript library for building
composable user interfaces

React gives you

A lightweight virtual DOIM
Powerful wiews without templates

Unidirectional data flow

BExplicit mutation

A React app consists of

Reusable components

Components makes code reuse, testing,
and separation of concerns casy.

Not just the V

In the beginning, React was presented
as the V in MVC.

I'his is at best a huge simplification.

React has state, it handles mapping
from input to state changes, and it
renders components. In this sense, it
does everything that an MVC does.

‘A golden shining
, moment': the true story
a cn“"’ behind Atari's ET, the
\ Js worst video game ever

§8 16 comments

S 4 Angry Birds set sights on
. ;@‘g L é 6,, Candy Crush with new
? ,‘,\ =% > | mobile puzzle games
g 19 0%

] comment

Revi‘ew Saints Row IV: Re-Electeci
understand that criticism And Gat Out Of Hell review

isn't censorship? Xbox One, Xbox 360, PS3, PS4, PC; Deep Silver; £29.97-
£43.99

] %= When will gamers

#8 3 comments

<NewsFeed>

8 Angry Birds set sights on
Candy Crush with new
mobile puzzle games

1 comment

“| = When will gamers
understand that criticism
isn't censorship?

<ltemCover>

M Angry Birds set sights on
£ Candy Crush with new
mobile puzzle games

1 comment

*= When will gamers
understand that criticism
isn't censorship?

Newsltem.jsx

var React = require("react");

var ItemCover = React.createClass({
render: function(){
return(
<figure className="news-cover"> [...] </figure>
)

}
});

var NewsItem = React.createClass({
render: function (){
return(

<article className='"news-item">
<ItemCover />
<div className="news-title"> [...] </div>
<div className="news-1link"> [...] </div>

</article>

});

Newsltem.jsx

var React = require("react");

Newsltem.jsx

var React = require("react");

var NewsItem = React.createClass({
render: function (){
return(

<article className='"news-item">
<ItemCover />
<div className="news-title"> [...] </div>
<div className="news-1link"> [...] </div>

</article>

});

Newsltem.jsx

var React = require("react");

var ItemCover = React.createClass({
render: function(){
return(
<figure className="news-cover"> [...] </figure>

var NewsItem = React.createClass({
render: function (){
return(
<article className="news-item">
—» <ItemCover />
<div className="news-title"> [...] </div>
<div className="news-1link"> [...] </div>
</article>

});

[SX

A Javascript XML based extension
that makes 1t easy to mix HTML with
Javascript

66

We strongly believe that
components are the right way to
separate concerns rather than
"templates” and "display logic.”

We think that markup and the
code that generates it are
intimately tied together.

facebook

[nitial
render

Component Life Cycle

Component Did Mount |

Set initial value of
this.state

Set initial value of
this.props

Calling setState here does
not cause a re-render

Return JSX for component
Never update state here

Called immediately after
render

Component Life Cycle

- Tak t input

§ as this.props
Change

- Calling setState() here does
-« not trigger re-render

e Can abortrender if you

§ return false here. If false,
¢ componentWillUpdate and
«2 componentDidUpdate will not
be called.

“ 1 nextProps, nextState available
§ here

NOT called for 3 Cannot use setState() here

initial render

{4 called immediately after

i Component did update § render

Component Life Cycle

STATE
Change

ey Can abortrender if you
§ return false here. If false,
componentWillUpdate and
~§ componentDidUpdate will not
" be called.

7§ nextProps, nextState available

§ here
«% Cannot use setState() here

NOT called for
initial render

} Called immediately after
render

Component Life Cycle

The statics object allows you to define static methods
St atl CS that can be invoked on the component without creating instances

var Component = React.createClass({
statics: {

componentName: 'My Static Component’

},
render: function() {

return Hello World
}

)F

console. log(Component.componentName); // My Static Component

These methods do not have access to the component’s props or state

Component Life Cycle

Unmount

> Invoked immediately before
§ component is unmounted.

¥ For cleanup, invalidating

«# timers etc.

Virtual DOM

Render Build a new

the DOM Virtual DOM
Batch execute Diff with
all updates sl Ll old DOM

Compute the minimal
sets of mutation and queue

State

For interactivity
in the component.
Mutable data

Props

For data passed
to the component
Should be treated as
immutable.

State

[s updated by calling setState()

Every call to setState() triggers a re-render

(except when called within
componentDidMount)

React jQuery

,@qT\? \ﬂf\ﬂ~-~~v7- lim 2"y /2 - 1/2+ 2+~ + V2.

——p——— S —— S ——————

n Square roots N sguare roots

lim 2"y /2 - 2+ 2+ + V2.

" 2 \" 2 } \,""2 U \/‘ﬁ . N0
| | W
N square roots

% square roots
. ' |" | I‘
lim 2" ,/2 ;2}\’,'2..... ,
n—0C \" \'

N SQUAre roots

7 square roots

Only the changes Everything is
are rendered re-rendered

Server Rendering

T'raditional Javascript applications
are hard to render on the server. 1'nis
makes the app uncrawlable, and you
miss out on SHEO.

Server Rendering

Fortunately, React can handle this
with ease.

All you need to do 1s call

renderToString inste

ad of render

and you've got a o)

0 ready

cormponent.

Server Rendering

Another option is to call
renderToStaticMarkup.

1'his is similar to renderTostring,
except this doesn't create extra DOM
attriputes such as data-react-1d which
is useful if you want to use React as a

simple static page generator.

[EST

Built on top of the Jasmine test
framework, using familiar
expect(value).toBe(other) assertions

[EST

Automatically finds tests to execute in
YOUur repo

[EST

Automatically mocks dependencies
for you when running your tests

[EST

Allows you to test asyncnronous code
Syncnronously

[EST

Runs your tests with a fake DOM
implementation (via jsdom) so that
your tests can run on the commeand
line

[EST

In short, if you want to test React
code, use JEST.

Practical example

Unclicked State Clicked State

Button

jest.dontMock('../public/src/scripts/button/index.js"');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

aaa

jest.dontMock("'../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"'));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock('../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons’);

var Component = React.createFactory(require('../public/src/scripts/button/index.js"));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect (buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock("'../public/src/scripts/button/index.js"');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons’');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"'));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock('../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"'));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect (buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock("'../public/src/scripts/button/index.js"');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"'));

var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock('../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect (buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock('../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {

vvvvvvv

var Component = React.createFactory(require('../public/src/scripts/button/index.js'));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

aaa

aaa

jest.dontMock("'../public/src/scripts/button/index.js"');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"'));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

JJJ

aaa

jest.dontMock('../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');
var Component = React.createFactory(require('../public/src/scripts/button/index.js'));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button):
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect(buttonText.getDOMNode().textContent).toBe('Clicked me');
});
});

aaa

aaa

jest.dontMock('../public/src/scripts/button/index.js');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect (buttonText.getDOMNode().textContent).toBe('Clicked me');
LI
});

JJJ

jest.dontMock('../public/src/scripts/button/index.js"');

describe('ClickButton', function() {
it('changes state when user clicks a button', function() {
var React = require('react/addons');

var Component = React.createFactory(require('../public/src/scripts/button/index.js"));
var TestUtils = React.addons.TestUtils;
var instance = TestUtils.renderIntoDocument(Component);

var button = TestUtils.findRenderedDOMComponentWithClass(instance, 'button');

TestUtils.Simulate.click(button);
buttonText = TestUtils.findRenderedDOMComponentWithClass(instance, 'buttonStatus');
expect (buttonText.getDOMNode().textContent).toBe('Clicked me');

});
Es

4 ./node_modules/.bin/jest __tests__/clickButton.js
Using Jest CLI v@.2.1

PASS __tests__/clickButton.js (6.576s)

1 test passed (1 total)

Run time: 6.799s

WAIT TIL YOU SEE THE SIZE OF MY

Routing

React does not have a native router

There are however g few to chooge
petween

React-router
React-router-component
Monorouter

React-router example

// Define react-router routes
var routes = (
<Route name="/" handler={Layout}>
<DefaultRoute handler={require('./home')} />
<Route name="home" handler={require('./home')} />
<Route name="contact" handler={require('./contact')} />
<Route name="about" handler={require('./about')} />
<Redirect from="/" to="home" />
</Route>
);

// Run the router

Router. run(routes, function (Handler) {
// Render the root app view-controller
React.render(<Handler />, document.body);

});

So inline styles, eh?

T'here’s actually a good reason for
doing this.

So inline styles, eh?

CSo pollutes the global namespace

Al scale, this 1s bad because it leads to
paralysis and confusion.

Can I add this element, or change this
clags? If you're not sure, you're in
frouble.

So inline styles, eh?

Inline styles avold this, because the
CSio 18 scoped to the component you're
working with.

How it looks

module.exports = React.createClass({
displayName: "“Home",

render() {
var inlineCss={
padding: '10px’,
lineHeight: '16px’,
color: 'red’
|+
return <div >
<div className="flyin-widget">
<hl style={inlineCss}>Home</h1>

</div>
</div>

});

Not your 80s inline

<h1l style={inlineCss}>Home</h1>

It's not really "Inline". We merely pass a reference
to a rule that's somewhere else in the file, just like
CS6.

otyle 1s actually a much better name than class.
You want to “style” the element, not “clags” it.

Finally, this is not applying the style directly, this
is using React virtual DOM and is being diff-ed the
same way elements are.

Still....

The goal is not to replace CSo as it's done today.
It’s simply focusing on the fundamental problem
with CS6 and trying to solve it.

You do not have to uee it. If you apply a className
tag to your elements, you can use Css as you've
always done.

Mixins

Basically, pure React components that
can be Incorporated in your other
COMpPoneNts

Mixins

Components that use mixing inherits
state and props from the mixin

Mixi
~in = ar Mixin = React. teClass({
var SetIntervalMN P R

componentWillWMount: functi
this.intervals = [];
I

setInterval: function() { render() 1

. : return <div >
this.intervals.push(se <div className="flyin-widget">

},

componentWillUnmount: func
this.intervals.map(cle L

})

}: h;

aaa

Last words

Virtual DOM. = native event system
and other technicalities are nice

But Reacts true strength arc actually
none of these

Last words

Reacts true strengths are:

Unidirectional Data Hlow

Freedom from Domain Specific
Language (it's all Javascript)

Explicit Mutation

Questions?

Source Code available at

github.com/svenanders/react-tutorial

http://learnreact.robbestad.com

http://github.com/svenanders/react-tutorial
http://learnreact.robbestad.com

